Part Number Hot Search : 
15KP110 2SC5517 3KE13A MTL004 BDX33A ZQ50K4L2 MBR60 CTS02M
Product Description
Full Text Search
 

To Download B32613A1103 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Film Capacitors
Metallized Polypropylene Film Capacitors (MKP)
Series/Type: Date:
B32612 ... B32614 May 2009
(c) EPCOS AG 2009. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.
Metallized polypropylene film capacitors (MKP) High pulse (wound)
B32612 ... B32614
Typical applications Electronic ballasts Switch-mode power supplies Climatic Max. operating temperature: 110 C Climatic category (IEC 60068-1): 55/100/56 Construction Dielectric: polypropylene (PP) Wound capacitor technology Epoxy resin coating (UL 94 V-0) Features Very high pulse strength Terminals Crimped wire leads, lead-free tinned, lead length (6 1) mm Double crimped wire leads, lead-free tinned Straight wire leads, lead-free tinned, lead length (17 3) mm Different lead spacings (reduced and enlarged) available, lead length (6 1) mm Marking Manufacturer's logo, style and type (P61x), rated capacitance (coded), capacitance tolerance (code letter), rated DC voltage, date of manufacture (code) Delivery mode Bulk (untaped) Taped (Ammo pack or reel) For notes on taping, refer to chapter "Taping and packing".
Please read Cautions and warnings and Important notes at the end of this document.
Page 2 of 32
B32612 ... B32614 High pulse (wound)
Dimensional drawings
Detail of double crimped version
Dimensions in mm Lead spacing 0.8 15.0 22.5 27.5 Lead diameter d1 0.8 0.8 0.8 Type B32612 B32613 B32614
Please read Cautions and warnings and Important notes at the end of this document.
Page 3 of 32
B32612 ... B32614 High pulse (wound)
Overview of available types Lead spacing 15.0 mm Type Page VR (V DC) VRMS (V AC) CR (nF) 1.0 1.5 2.2 3.3 4.7 6.8 10 15 22 33 47 68 100 150 220 330 470 680 Lead configurations Serie Standard Reduced Enlarged Straight Double crimped B32612 7 250 160 400 200 630 250 1000 250 1250 500 1600 500 1600 700 2000 700
B32612 B32613 B32614
15 mm 22.5 mm 27.5 mm
7.5 / 10 / 12.5 mm 15 / 17.5 / 20 mm 25 mm
17.5 mm 25 mm
15 mm 22.5 mm 27.5 mm
15 mm 22.5 mm 27.5 mm
Please read Cautions and warnings and Important notes at the end of this document.
Page 4 of 32
B32612 ... B32614 High pulse (wound)
Overview of available types Lead spacing 22.5 mm Type Page VR (V DC) VRMS (V AC) CR (nF) 3.3 4.7 6.8 10 15 22 33 47 68 100 150 220 330 470 680 1000 Lead configurations Serie Standard Reduced Enlarged Straight Double crimped B32613 9 250 160 400 200 630 250 1000 250 1600 500 2000 700 2000 1000
B32612 B32613 B32614
15 mm 22.5 mm 27.5 mm
7.5 / 10 / 12.5 mm 15 / 17.5 / 20 mm 25 mm
17.5 mm 25 mm
15 mm 22.5 mm 27.5 mm
15 mm 22.5 mm 27.5 mm
Please read Cautions and warnings and Important notes at the end of this document.
Page 5 of 32
B32612 ... B32614 High pulse (wound)
Overview of available types Lead spacing 27.5 mm Type Page VR (V DC) VRMS (V AC) CR (nF) 10 15 22 33 47 68 100 150 220 470 680 1000 1500 2200 Lead configurations Serie Standard Reduced Enlarged Straight Double crimped B32614 11 250 160 400 200 630 250 1000 250 1600 500 2000 700
B32612 B32613 B32614
15 mm 22.5 mm 27.5 mm
7.5 / 10 / 12.5 mm 15 / 17.5 / 20 mm 25 mm
17.5 mm 25 mm
15 mm 22.5 mm 27.5 mm
15 mm 22.5 mm 27.5 mm
Please read Cautions and warnings and Important notes at the end of this document.
Page 6 of 32
B32612 High pulse (wound)
Ordering codes and packing units (lead spacing 15 mm) VRMS CR f 1 kHz V DC V AC nF 250 160 150 220 330 470 680 400 200 68 100 150 220 330 470 630 250 68 100 150 220 1000 250 10 15 22 33 47 68 100 VR Max. dimensions wxhxl mm 6.5 x 12.5 x 18.0 7.0 x 13.5 x 18.0 8.0 x 14.5 x 18.0 9.5 x 16.0 x 18.0 11.5 x 17.5 x 18.0 6.5 x 12.0 x 18.0 7.0 x 12.5 x 18.0 7.5 x 12.5 x 18.0 8.0 x 14.5 x 18.0 9.5 x 16.0 x 18.0 11.0 x 17.5 x 18.0 6.5 x 12.0 x 18.0 7.5 x 13.0 x 18.0 9.0 x 14.5 x 18.0 10.0 x 16.5 x 18.0 7.0 x 12.5 x 18.0 8.0 x 13.5 x 18.0 9.0 x 15.5 x 18.0 6.5 x 13.0 x 18.0 7.0 x 15.5 x 18.0 8.5 x 16.5 x 18.0 11.0 x 17.5 x 18.0 Ordering code (composition see below) B32612A3154+*** B32612A3224+*** B32612A3334+*** B32612A3474+*** B32612A3684+*** B32612A4683+*** B32612A4104+*** B32612A4154+*** B32612A4224+*** B32612A4334+*** B32612A4474+*** B32612A6683+*** B32612A6104+*** B32612A6154+*** B32612A6224+*** B32612A0103+*** B32612A0153+*** B32612A0223+*** B32612A0333+*** B32612A0473+*** B32612A0683+*** B32612A0104+*** Ammo pack pcs./MOQ 3400 3200 2800 2400 2000 3400 3200 3000 2800 2400 2000 3400 3000 2400 2200 3200 2800 2400 3400 3200 2600 2000 Reel pcs./ MOQ 4400 4000 3600 3200 2600 4400 4000 4000 3600 3200 2600 4400 4000 3200 3000 4000 3600 3200 4400 4000 3400 2600 Untaped pcs./ MOQ 4000 4000 2000 2000 2000 4000 4000 4000 2000 2000 2000 4000 4000 2000 2000 4000 4000 4000 4000 4000 2000 2000
MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.
Composition of ordering code + = Capacitance tolerance code: K = 10% J = 5%
*** = Packaging code: 289 = Ammo pack 189 = Reel 010 = Untaped crimped (lead length 6 1 mm) 008 = Untaped straight (lead length 173 mm) 020 = Double crimped (lead length 6 1 mm)
Packaging codes for further lead configurations (untaped): Lead configuration (lead length 6 Lead spacing (mm) Packaging code 1 mm) Reduced 7.5 mm 030 Reduced 10 mm 040 Reduced 12.5 mm 050 Enlarged 17.5 mm 060
Please read Cautions and warnings and Important notes at the end of this document.
Page 7 of 32
B32612 High pulse (wound)
Ordering codes and packing units (lead spacing 15 mm) VR VRMS CR f 1 kHz V DC V AC nF 1250 500 6.8 10 15 22 33 1600 500 4.7 6.8 10 15 1600 700 3.3 4.7 6.8 10 2000 700 1.0 1.5 2.2 3.3 4.7 Max. dimensions wxhxl mm 7.0 x 11.0 x 18.0 7.5 x 13.0 x 18.0 8.0 x 14.0 x 18.0 9.5 x 15.5 x 18.0 11.0 x 17.5 x 18.0 6.5 x 12.0 x 18.0 8.0 x 13.0 x 18.0 9.0 x 14.5 x 18.0 10.0 x 17.5 x 18.0 6.5 x 11.5 x 18.0 7.5 x 12.5 x 18.0 8.5 x 14.5 x 18.0 9.5 x 17.0 x 18.0 7.0 x 10.5 x 18.0 7.5 x 11.5 x 18.0 8.0 x 14.5 x 18.0 8.5 x 15.0 x 18.0 9.5 x 18.0 x 18.0 Ordering code (composition see below) B32612A7682+*** B32612A7103+*** B32612A7153+*** B32612A7223+*** B32612A7333+*** B32612A1472+*** B32612A1682+*** B32612A1103+*** B32612A1153+*** B32612J1332+*** B32612J1472+*** B32612J1682+*** B32612J1103+*** B32612A2102+*** B32612A2152+*** B32612A2222+*** B32612A2332+*** B32612A2472+*** Ammo pack pcs./MOQ 3200 3000 2800 2400 2000 3400 2800 2400 2200 3400 3000 2600 2400 3200 3000 2800 2600 2400 Reel pcs./ MOQ 4000 4000 3600 3200 2600 4400 3600 3200 3000 4400 4000 3400 3200 4000 4000 3600 3400 3200 Untaped pcs./ MOQ 4000 4000 2000 2000 2000 4000 2000 2000 2000 4000 4000 2000 1000 4000 4000 4000 2000 2000
MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.
Composition of ordering code + = Capacitance tolerance code: K = 10% J = 5%
*** = Packaging code: 289 = Ammo pack 189 = Reel 010 = Untaped crimped (lead length 6 1 mm) 008 = Untaped straight (lead length 173 mm) 020 = Double crimped (lead length 6 1 mm)
Packaging codes for further lead configurations (untaped): Lead configuration (lead length 6 Lead spacing (mm) Packaging code 1 mm) Reduced 7.5 mm 030 Reduced 10 mm 040 Reduced 12.5 mm 050 Enlarged 17.5 mm 060
Please read Cautions and warnings and Important notes at the end of this document.
Page 8 of 32
B32613 High pulse (wound)
Ordering codes and packing units (lead spacing 22.5 mm) VRMS CR f 1 kHz V DC V AC nF 250 160 220 330 470 680 1000 400 200 150 220 330 470 680 630 250 100 150 220 330 470 1000 250 33 47 68 100 150 VR Max. dimensions wxhxl mm 7.0 x 14.5 x 26.5 7.0 x 14.5 x 26.5 8.0 x 15.5 x 26.5 9.5 x 16.0 x 26.5 11.0 x 19.0 x 26.5 7.0 x 13.5 x 26.5 7.0 x 14.0 x 26.5 8.0 x 16.0 x 26.5 9.5 x 16.0 x 26.5 11.5 x 17.5 x 26.5 7.0 x 12.5 x 26.5 7.5 x 14.0 x 26.5 9.0 x 15.5 x 26.5 10.0 x 18.0 x 26.5 11.0 x 20.0 x 26.5 8.5 x 14.5 x 26.5 10.0 x 15.5 x 26.5 11.0 x 17.5 x 26.5 10.0 x 16.5 x 26.5 12.0 x 18.0 x 26.5 Ordering code (composition see below) B32613A3224+*** B32613A3334+*** B32613A3474+*** B32613A3684+*** B32613A3105+*** B32613A4154+*** B32613A4224+*** B32613A4334+*** B32613A4474+*** B32613A4684+*** B32613A6104+*** B32613A6154+*** B32613A6224+*** B32613A6334+*** B32613A6474+*** B32613A0333+*** B32613A0473+*** B32613A0683+*** B32613A0104+*** B32613A0154+*** Ammo pack pcs./MOQ 2000 2000 1800 1400 1200 2000 2000 1800 1400 1200 2000 1800 1600 1400 1200 1600 1400 1200 1400 1200 Reel pcs./ MOQ 2800 2800 2400 2000 1800 2800 2800 2400 2000 1600 2800 2600 2200 2000 1800 2200 2000 1800 2000 1600 Untaped pcs./ MOQ 2000 2000 2000 2000 1000 2000 2000 2000 1000 1000 1000 1000 1000 1000 1000 2000 1000 1000 1000 1000
MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.
Composition of ordering code + = Capacitance tolerance code: K = 10% J = 5%
*** = Packaging code: 289 = Ammo pack 189 = Reel 010 = Untaped crimped (lead length 6 1 mm) 008 = Untaped straight (lead length 173 mm) 020 = Double crimped (lead length 6 1 mm)
Packaging codes for further lead configurations (untaped): Lead configuration (lead length 6 Lead spacing (mm) Packaging code 1 mm) Reduced 15 mm 055 Reduced 17.5 mm 060 Reduced 20 mm 070 Enlarged 25 mm 080
Please read Cautions and warnings and Important notes at the end of this document.
Page 9 of 32
B32613 High pulse (wound)
Ordering codes and packing units (lead spacing 22.5 mm) VR VRMS CR f 1 kHz V DC V AC nF 1600 500 10 15 22 33 2000 700 3.3 4.7 6.8 10 15 2000 1000 3.3 4.7 6.8 10 Max. dimensions wxhxl mm 7.0 x 13.5 x 26.5 8.0 x 14.5 x 26.5 9.0 x 17.0 x 26.5 10.5 x 18.5 x 26.5 7.0 x 13.0 x 26.5 7.5 x 14.0 x 26.5 8.5 x 16.0 x 26.5 10.5 x 17.0 x 26.5 12.0 x 20.5 x 26.5 8.0 x 14.5 x 26.5 8.5 x 16.5 x 26.5 10.0 x 18.5 x 26.5 11.5 x 21.5 x 26.5 Ordering code (composition see below) B32613A1103+*** B32613A1153+*** B32613A1223+*** B32613A1333+*** B32613A2332+*** B32613A2472+*** B32613A2682+*** B32613A2103+*** B32613A2153+*** B32613A8332+*** B32613A8472+*** B32613A8682+*** B32613A8103+*** Ammo pack pcs./MOQ 2000 1800 1600 1400 2000 1800 1600 1400 1200 1800 1600 1400 1200 Reel pcs./ MOQ 2800 2400 2200 1800 2800 2600 2200 1800 1600 2400 2200 2000 1600 Untaped pcs./ MOQ 2000 2000 1000 1000 2000 2000 2000 1000 1000 2000 1000 1000 1000
MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.
Composition of ordering code + = Capacitance tolerance code: K = 10% J = 5%
*** = Packaging code: 289 = Ammo pack 189 = Reel 010 = Untaped crimped (lead length 6 1 mm) 008 = Untaped straight (lead length 173 mm) 020 = Double crimped (lead length 6 1 mm)
Packaging codes for further lead configurations (untaped): Lead configuration (lead length 6 Lead spacing (mm) Packaging code 1 mm) Reduced 15 mm 055 Reduced 17.5 mm 060 Reduced 20 mm 070 Enlarged 25 mm 080
Please read Cautions and warnings and Important notes at the end of this document.
Page 10 of 32
B32614 High pulse (wound)
Ordering codes and packing units (lead spacing 27.5 mm) VR VRMS CR f 1 kHz V DC V AC nF 250 160 470 680 1000 1500 2200 400 200 470 680 1000 1500 2200 630 250 470 680 1000 1000 250 100 150 220 1600 500 22 33 47 68 2000 700 10 15 22 33 47 Max. dimensions wxhxl mm 7.0 x 15.0 x 31.5 8.0 x 16.5 x 31.5 9.5 x 17.5 x 31.5 11.5 x 19.5 x 31.5 14.0 x 22.0 x 31.5 9.5 x 15.0 x 31.5 10.0 x 17.5 x 31.5 11.5 x 19.5 x 31.5 14.0 x 22.0 x 31.5 16.5 x 24.5 x 31.5 10.5 x 18.5 x 31.5 12.0 x 21.5 x 31.5 14.0 x 24.0 x 31.5 11.5 x 17.5 x 31.5 13.0 x 21.0 x 31.5 14.5 x 24.5 x 31.5 9.0 x 14.5 x 31.5 10.5 x 16.0 x 31.5 11.0 x 19.5 x 31.5 13.0 x 21.5 x 31.5 9.0 x 15.5 x 31.5 11.0 x 17.5 x 31.5 13.0 x 19.5 x 31.5 14.5 x 23.0 x 31.5 16.5 x 25.5 x 31.5 Ordering code (composition see below) B32614A3474+*** B32614A3684+*** B32614A3105+*** B32614A3155+*** B32614A3225+*** B32614A4474+*** B32614A4684+*** B32614A4105+*** B32614A4155+*** B32614A4225+*** B32614A6474+*** B32614A6684+*** B32614A6105+*** B32614A0104+*** B32614A0154+*** B32614A0224+*** B32614A1223+*** B32614A1333+*** B32614A1473+*** B32614A1683+*** B32614A2103+*** B32614A2153+*** B32614A2223+*** B32614A2333+*** B32614A2473+*** Untaped pcs./MOQ 2000 2000 800 800 800 800 800 800 800 600 800 800 800 2000 800 800 2000 2000 800 800 2000 800 800 800 600
MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.
Composition of ordering code + = Capacitance tolerance code: K = 10% J = 5% *** = Packaging code: 010 = Untaped crimped (lead length 6 1 mm) 008 = Untaped straight (lead length 173 mm) 020 = Double crimped (lead length 6 1 mm)
Packaging codes for further lead configurations (untaped): Lead configuration (lead length 6 Lead spacing (mm) Packaging code 1 mm) Reduced 25 mm 090
Please read Cautions and warnings and Important notes at the end of this document.
Page 11 of 32
B32612 ... B32614 High pulse (wound)
Technical data Max. operating temperature Top,max +110 C Upper category temperature Tmax +100 C Lower category temperature Tmin 55 C Rated temperature TR +85 C Dissipation factor tan (in 10-3) at CR0.1 F 0.1 F1 F Operating temperature range at 20 C (upper limit values) 1 kHz 10 kHz 100 kHz 5.0 0.5 0.8 0.5 1.5
CR 0.33 F CR > 0.33 F Insulation resistance Rins or time constant = CR Rins 100 G 30000 s at 20 C, rel. humidity 65% (minimum as-delivered values) DC test voltage 1.6 VR, 2 s TA (C) DC voltage derating AC voltage derating Category voltage VC (continuous operation with VDC TA 85 VC = VR VC,RMS = VRMS or VAC at f 1 kHz) 85 10% of parameters Dissipation factor tan > 4 upper limit value Insulation resistance Rins < 1500 M (CR0.33 F) or time constant = CR Rins < 500 s (CR>0.33 F)
Please read Cautions and warnings and Important notes at the end of this document.
Page 12 of 32
B32612 ... B32614 High pulse (wound)
Characteristic voltages VDC, VAC, Vpp VDC V 1000 1250 1600 1600 2000 2000 VAC V 250 500 500 700 700 1000 Vpp V 700 1250 1400 1600 1600 2000
Please read Cautions and warnings and Important notes at the end of this document.
Page 13 of 32
B32612 ... B32614 High pulse (wound)
Pulse handling capability "dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in V/s. "k0" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in V2/s. Note: The values of dV/dt and k0 provided below must not be exceeded in order to avoid damaging the capacitor. dV/dt values Lead spacing VR VRMS V DC V AC 250 160 400 200 630 250 1000 250 1250 500 1600 500 1600 700 2000 700 2000 1000 k0 values Lead spacing VR VRMS V DC V AC 250 160 400 200 630 250 1000 250 1250 500 1600 500 1600 700 2000 700 2000 1000 15 mm k0 in V2/s 100 000 250 000 500 000 3 000 000 9 000 000 20 000 000 28 000 000 60 000 000 22.5 mm 27.5 mm 15 mm dV/dt in V/s 200 300 400 975 1850 4500 5200 8000 22.5 mm 27.5 mm
120 180 300 600 1150 2400 7000 7500
50 100 150 300 600 1000 2300
60 000 200 000 350 000 1 500 000 3 750 000 10 000 000 40 000 000 50 000 000
25 000 110 000 250 000 1 000 000 2 000 000 4 000 000 15 000 000
Please read Cautions and warnings and Important notes at the end of this document.
Page 14 of 32
B32612 ... B32614 High pulse (wound)
Impedance Z versus frequency f (typical values)
Please read Cautions and warnings and Important notes at the end of this document.
Page 15 of 32
B32612 High pulse (wound) Permissible AC voltage VRMS versus frequency f (for sinusoidal waveforms, TA 90 C) For TA >90 C, please refer to "General technical information", section 3.2.3. Lead spacing 15 mm 250 V DC/160 V AC 400 V DC/200 V AC
630 V DC/250 V AC
1000 V DC/250 V AC
Please read Cautions and warnings and Important notes at the end of this document.
Page 16 of 32
B32612 High pulse (wound) Permissible AC voltage VRMS versus frequency f (for sinusoidal waveforms, TA 90 C) For TA >90 C, please refer to "General technical information", section 3.2.3. Lead spacing 15 mm 1250 V DC/500 V AC 1600 V DC/500 V AC
1600 V DC/700 V AC
2000 V DC/700 V AC
Please read Cautions and warnings and Important notes at the end of this document.
Page 17 of 32
B32613 High pulse (wound) Permissible AC voltage VRMS versus frequency f (for sinusoidal waveforms, TA 90 C) For TA >90 C, please refer to "General technical information", section 3.2.3. Lead spacing 22.5 mm 250 V DC/160 V AC 400 V DC/200 V AC
630 V DC/250 V AC
1000 V DC/250 V AC
Please read Cautions and warnings and Important notes at the end of this document.
Page 18 of 32
B32613 High pulse (wound) Permissible AC voltage VRMS versus frequency f (for sinusoidal waveforms, TA 90 C) For TA >90 C, please refer to "General technical information", section 3.2.3. Lead spacing 22.5 mm 1600 V DC/500 V AC 2000 V DC/700 V AC
2000 V DC/1000 V AC
Please read Cautions and warnings and Important notes at the end of this document.
Page 19 of 32
B32614 High pulse (wound) Permissible AC voltage VRMS versus frequency f (for sinusoidal waveforms, TA 90 C) For TA >90 C, please refer to "General technical information", section 3.2.3. Lead spacing 27.5 mm 250 V DC/160 V AC 400 V DC/200 V AC
630 V DC/250 V AC
1000 V DC/250 V AC
Please read Cautions and warnings and Important notes at the end of this document.
Page 20 of 32
B32614 High pulse (wound) Permissible AC voltage VRMS versus frequency f (for sinusoidal waveforms, TA 90 C) For TA >90 C, please refer to "General technical information", section 3.2.3. Lead spacing 27.5 mm 1600 V DC/500 V AC 2000 V DC/700 V AC
Please read Cautions and warnings and Important notes at the end of this document.
Page 21 of 32
B32612 ... B32614 High pulse (wound)
Mounting guidelines 1 1.1 Soldering Solderability of leads
The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1. Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur. Solder bath temperature Soldering time Immersion depth Evaluation criteria: Visual inspection 1.2 235 5 C 2.0 0.5 s 2.0 +0/ 0.5 mm from capacitor body or seating plane Wetting of wire surface by new solder 90%, free-flowing solder
Resistance to soldering heat
Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions: Series Solder bath temperature Soldering time 10 1 s
MKT boxed (except 2.5 x 6.5 x 7.2 mm) 260 5 C coated uncoated (lead spacing > 10 mm) MFP MKP (lead spacing > 7.5 mm) MKT boxed (case 2.5 x 6.5 x 7.2 mm) MKP (lead spacing 7.5 mm) MKT uncoated (lead spacing 10 mm) insulated (B32559)
5 1 s <4s recommended soldering profile for MKT uncoated (lead spacing 10 mm) and insulated (B32559)
Please read Cautions and warnings and Important notes at the end of this document.
Page 22 of 32
B32612 ... B32614 High pulse (wound)
Immersion depth Shield Evaluation criteria: Visual inspection C/C0 tan
2.0 +0/ 0.5 mm from capacitor body or seating plane Heat-absorbing board, (1.5 0.5) mm thick, between capacitor body and liquid solder No visible damage 2% for MKT/MKP/MFP 5% for EMI suppression capacitors As specified in sectional specification
Please read Cautions and warnings and Important notes at the end of this document.
Page 23 of 32
B32612 ... B32614 High pulse (wound)
1.3
General notes on soldering
Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature Tmax. Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like: Pre-heating temperature and time Forced cooling immediately after soldering Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping) Height of capacitor above solder bath Shadowing by neighboring components Additional heating due to heat dissipation by neighboring components Use of solder-resist coatings The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included. EPCOS recommends the following conditions: Pre-heating with a maximum temperature of 110 C Temperature inside the capacitor should not exceed the following limits: MKP/MFP 110 C MKT 160 C When SMD components are used together with leaded ones, the leaded film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step. Leaded film capacitors are not suitable for reflow soldering. Uncoated capacitors For uncoated MKT capacitors with lead spacings 10 mm (B32560/B32561) the following measures are recommended: pre-heating to not more than 110 C in the preheater phase rapid cooling after soldering
Please read Cautions and warnings and Important notes at the end of this document.
Page 24 of 32
B32612 ... B32614 High pulse (wound)
2
Cleaning
To determine whether the following solvents, often used to remove flux residues and other substances, are suitable for the capacitors described, refer to the table below: Type Ethanol, isopropanol, n-propanol n-propanol-water mixtures, water with surface tension-reducing tensides (neutral) Unsuitable Suitable Solvent from table A (see next page) Solvent from table B (see next page)
MKT (uncoated) MKT, MKP, MFP (coated/boxed)
Suitable
In part suitable Unsuitable Suitable
Even when suitable solvents are used, a reversible change of the electrical characteristics may occur in uncoated capacitors immediately after they are washed. Thus it is always recommended to dry the components (e.g. 4 h at 70 C) before they are subjected to subsequent electrical testing. Table A Manufacturers' designations for trifluoro-trichloro-ethane-based cleaning solvents (selection) Trifluoro-trichloroethane Freon TF Frigen 113 TR Arklone P Kaltron 113 MDR Flugene 113 Mixtures of trifluoro-trichloro-ethane with ethanol and isopropanol Freon TE 35; Freon TP 35; Freon TES Frigen 113 TR-E; Frigen 113 TR-P; Frigen TR-E 35 Arklone A; Arklone L; Arklone K Kaltron 113 MDA; Kaltron 113 MDI; Kaltron 113 MDI 35 Flugene 113 E; Flugene 113 IPA Manufacturer Du Pont Hoechst ICI Kali-Chemie Rhone-Progil
Table B (worldwide banned substances) Manufacturers' designations for unsuitable cleaning solvents (selection) Mixtures of chlorinated hydrocarbons and ketones with fluorated hydrocarbons Freon TMC; Freon TA; Freon TC Arklone E Kaltron 113 MDD; Kaltron 113 MDK Flugene 113 CM Manufacturer Du Pont ICI Kali-Chemie Rhone-Progil
Please read Cautions and warnings and Important notes at the end of this document.
Page 25 of 32
B32612 ... B32614 High pulse (wound)
3
Embedding of capacitors in finished assemblies
In many applications, finished circuit assemblies are embedded in plastic resins. In this case, both chemical and thermal influences of the embedding ("potting") and curing processes must be taken into account. Our experience has shown that the following potting materials can be recommended: non-flexible epoxy resins with acid-anhydride hardeners; chemically inert, non-conducting fillers; maximum curing temperature of 100 C. Caution: Consult us first if you wish to embed uncoated types!
Please read Cautions and warnings and Important notes at the end of this document.
Page 26 of 32
B32612 ... B32614 High pulse (wound)
Cautions and warnings Do not exceed the upper category temperature (UCT). Do not apply any mechanical stress to the capacitor terminals. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after it has been soldered to the PC board. Do not pick up the PC board by the soldered capacitor. Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing. Do not exceed the specified time or temperature limits during soldering. Avoid external energy inputs, such as fire or electricity. Avoid overload of the capacitors. The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines". Topic Safety information Reference chapter "General technical information" Make sure that capacitors are stored within the 4.5 specified range of time, temperature and humidity "Storage conditions" conditions. Avoid external energy, such as fire or electricity 5.3 (passive flammability), avoid overload of the "Flammability" capacitors (active flammability) and consider the flammability of materials. Do not exceed the tested ability to withstand 5.2 vibration. The capacitors are tested to "Resistance to vibration" IEC 60068-2-6. EPCOS offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics".
Storage conditions
Flammability
Resistance to vibration
Please read Cautions and warnings and Important notes at the end of this document.
Page 27 of 32
B32612 ... B32614 High pulse (wound)
Topic Soldering
Safety information
Do not exceed the specified time or temperature limits during soldering. Cleaning Use only suitable solvents for cleaning capacitors. Embedding of When embedding finished circuit assemblies in capacitors in plastic resins, chemical and thermal influences finished assemblies must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!
Reference chapter "Mounting guidelines" 1 "Soldering" 2 "Cleaning" 3 "Embedding of capacitors in finished assemblies"
Please read Cautions and warnings and Important notes at the end of this document.
Page 28 of 32
B32612 ... B32614 High pulse (wound)
Symbols and terms Symbol C A C C CR C C/C C/CR dt t T tan V dV/dt V/t E ESL ESR f f1 German Warmeubergangszahl Temperaturkoeffizient der Kapazitat Kondensatoroberflache Feuchtekoeffizient der Kapazitat Kapazitat Nennkapazitat Absolute Kapazitatsanderung Relative Kapazitatsanderung (relative Abweichung vom Ist-Wert) Kapazitatstoleranz (relative Abweichung vom Nennwert) Differentielle Zeit Zeitintervall Absolute Temperaturanderung (Selbsterwarmung) Absolute Anderung des Verlustfaktors Absolute Spannungsanderung Differentielle Spannungsanderung (Spannungsflankensteilheit) Spannungsanderung pro Zeitintervall Aktivierungsenergie zur Diffusion Eigeninduktivitat Ersatz-Serienwiderstand Frequenz Grenzfrequenz fur thermisch bedingte Reduzierung der zulassigen Wechselspannung Frequency limit for reducing permissible Grenzfrequenz fur strombedingte AC voltage due to current limit Reduzierung der zulassigen Wechselspannung Resonant frequency Resonanzfrequenz Thermal acceleration factor for diffusion Therm. Beschleunigungsfaktor zur Diffusion Derating factor Deratingfaktor Current (peak) Stromspitze Category current (max. continuous Kategoriestrom (max. Dauerstrom) current) English Heat transfer coefficient Temperature coefficient of capacitance Capacitor surface area Humidity coefficient of capacitance Capacitance Rated capacitance Absolute capacitance change Relative capacitance change (relative deviation of actual value) Capacitance tolerance (relative deviation from rated capacitance) Time differential Time interval Absolute temperature change (self-heating) Absolute change of dissipation factor Absolute voltage change Time differential of voltage function (rate of voltage rise) Voltage change per time interval Activation energy for diffusion Self-inductance Equivalent series resistance Frequency Frequency limit for reducing permissible AC voltage due to thermal limits
f2
fr FD FT i IC
Please read Cautions and warnings and Important notes at the end of this document.
Page 29 of 32
B32612 ... B32614 High pulse (wound)
Symbol IRMS iz k0 LS 0 test Pdiss Pgen Q R R Ri Rins RP RS S t T tan tan D tan P tan S TA Tmax Tmin tOL Top TR Tref tSL VAC
English (Sinusoidal) alternating current, root-mean-square value Capacitance drift Pulse characteristic Series inductance Failure rate Constant failure rate during useful service life Failure rate, determined by tests Dissipated power Generated power Heat energy Density of water vapor in air Universal molar constant for gases Ohmic resistance of discharge circuit Internal resistance Insulation resistance Parallel resistance Series resistance severity (humidity test) Time Temperature Time constant Dissipation factor Dielectric component of dissipation factor Parallel component of dissipation factor Series component of dissipation factor Ambient temperature Upper category temperature Lower category temperature Operating life at operating temperature and voltage Operating temperature Rated temperature Reference temperature Reference service life AC voltage
German (Sinusformiger) Wechselstrom Inkonstanz der Kapazitat Impulskennwert Serieninduktivitat Ausfallrate Konstante Ausfallrate in der Nutzungsphase Experimentell ermittelte Ausfallrate Abgegebene Verlustleistung Erzeugte Verlustleistung Warmeenergie Dichte von Wasserdampf in Luft Allg. Molarkonstante fur Gas Ohmscher Widerstand des Entladekreises Innenwiderstand Isolationswiderstand Parallelwiderstand Serienwiderstand Scharfegrad (Feuchtetest) Zeit Temperatur Zeitkonstante Verlustfaktor Dielektrischer Anteil des Verlustfaktors Parallelanteil des Verlfustfaktors Serienanteil des Verlustfaktors Umgebungstemperatur Obere Kategorietemperatur Untere Kategorietemperatur Betriebszeit bei Betriebstemperatur und -spannung Beriebstemperatur Nenntemperatur Referenztemperatur Referenz-Lebensdauer Wechselspannung
Please read Cautions and warnings and Important notes at the end of this document.
Page 30 of 32
B32612 ... B32614 High pulse (wound)
Symbol VC VC,RMS VCD Vch VDC VFB Vi Vo Vop Vp Vpp VR
R
English Category voltage Category AC voltage Corona-discharge onset voltage Charging voltage DC voltage Fly-back capacitor voltage Input voltage Output voltage Operating voltage Peak pulse voltage Peak-to-peak voltage Impedance Rated voltage Amplitude of rated AC voltage (Sinusoidal) alternating voltage, root-mean-square value S-correction voltage Snubber capacitor voltage Impedance Lead spacing
German Kategoriespannung (Sinusformige) Kategorie-Wechselspannung Teilentlade-Einsatzspannung Ladespannung Gleichspannung Spannung (Flyback) Eingangsspannung Ausgangssspannung Betriebsspannung Impuls-Spitzenspannung Spannungshub Nennspannung Amplitude der Nenn-Wechselspannung (Sinusformige) Wechselspannung Spannung bei Anwendung "S-correction" Spannung bei Anwendung "Beschaltung" Scheinwiderstand Rasterma
VRMS VSC Vsn Z
Please read Cautions and warnings and Important notes at the end of this document.
Page 31 of 32
Important notes
The following applies to all products named in this publication: 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application. 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. 3. The warnings, cautions and product-specific notes must be observed. 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices. 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products. 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI). 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DSSP, MiniBlue, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.
Page 32 of 32


▲Up To Search▲   

 
Price & Availability of B32613A1103

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X